ПATIIBIA UחIVERSITY of science and technology

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES
 DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 07BAMS	LEVEL: 7
COURSE CODE: CAN702S	COURSE NAME: COMPLEX ANALYSIS
SESSION: \quad NOVEMBER 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	DR. NEGA CHERE
MODERATOR:	PROF. FORTUNE MASSAMBA

INSTRUCTIONS

1. Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in the calculations.
3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

QUESTION 1 [19]

1.1. Express $Z=\frac{1+\mathrm{i}}{\overline{3+\imath}}$ in the form of $\mathrm{a}+\mathrm{ib}$ and then find its modules.
1.2. Use exponential form to express $(1-i)^{98}$ in the form of $a+i b$.
1.3. Find the argument and the principal argument of $z=-\frac{1}{2}-\mathrm{i} \frac{\sqrt{3}}{2}$.

QUESTION 2 [8]

Find the image of the triangle with vertices $\mathrm{z}_{1}=-2+\mathrm{i}$ and $\mathrm{z}_{2}=2+2 \mathrm{i}$ and $\mathrm{z}_{3}=-2+\mathrm{i}$ under the mapping $w=f(z)=(2+i) z-2 i$. Skitch the triangles.

QUESTION 3 [24]

3.1. Verify the Cauchy-Riemann equations for $f(z)=i z^{2}+z$.
3.2. Show that $f(z)=e^{-z}$ is analytic using the Cauchy-Riemann equations.

QUESTION 4 [16]

Verify that $u(x, y)=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}$ is harmonic, and find its harmonic conjugate $v(x, y)$. If $f(z)=u(x, y)+i(x, y)$, with $f(0)=i$, find $f(z)$.

QUESTION 5 [15]

Compute the following integrals.
5.1. $\int_{0}^{\frac{\pi}{4}} \mathrm{te}^{\mathrm{it}} \mathrm{dt}$. [7]
5.2. $\int_{C}\left(\mathrm{z}^{2}-\overline{\mathrm{z}}^{2}\right) \mathrm{dz}$ where $\mathrm{C}: \mathrm{z}(\mathrm{t})=\mathrm{t}^{2}+\mathrm{it}, 0 \leq \mathrm{t} \leq 1$.

QUESTION 6 [18]

Evaluate the following integrals
6.1. $\int_{\mathrm{C}} \frac{\sin \pi z d z}{z^{2}+1}$ where C is the positively oriented contour shown in the figure below. [11]

6.2. $\int_{c^{2}} \frac{1}{z^{3}(z+3 i)} d z$ where C is the circle $|z-i|=1$ is oriented positively.

